$\mathrm{O} 2-\mathrm{Cl}$	1.226 (3)	C8-03		1.220 (3)
$\mathrm{N} 1-\mathrm{C} 7$	1.346 (3)	C 8 - N 2		1.324 (3)
$\mathrm{N} 1-\mathrm{C} 3$	1.348 (3)	C6-C7		1.373 (4)
$\mathrm{N} 1-\mathrm{C} 2$	1.477 (3)	C6-C5		1.390 (3)
$\mathrm{C} 1-\mathrm{C} 2$	1.526 (3)			
$\mathrm{Ol}-\mathrm{Zn}-\mathrm{Ol}^{\text {i }}$	109.24 (9)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{Cl}$		114.4 (2)
$\mathrm{Ol}-\mathrm{Zn}-\mathrm{l}$	111.68 (5)	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$		121.0 (2)
O1-Zn- $\mathrm{I}^{\text {i }}$	109.94 (5)	C3-C4-C5		118.7 (2)
$\mathrm{I}-\mathrm{Zn}-\mathrm{I}^{\text {i }}$	104.29 (2)	C3-C4-C8		115.7 (2)
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{Zn}$	110.52 (14)	C5-C4-C8		125.5 (2)
C7-N1-C3	120.7 (2)	$\mathrm{O} 3-\mathrm{C} 8-\mathrm{N} 2$		123.7 (2)
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 2$	120.2 (2)	O3-C8-C4		118.9 (2)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	119.0 (2)	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 4$		117.4 (2)
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{O}$	125.9 (2)	C7-C6-C5		119.3 (2)
$\mathrm{O} 2-\mathrm{Cl}-\mathrm{C} 2$	115.9 (2)	C4-C5-C6		119.5 (2)
$\mathrm{O}-\mathrm{Cl}-\mathrm{C} 2$	118.1 (2)	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$		120.7 (2)
Symmetry code: (i) $-x, y, \frac{1}{2}-z$.				
Table 3. Hydrogen-bonding geometry (\AA, ${ }^{\circ}$)				
D-H..A	D-H	H \ldots A	D...	D-H \cdots A
$\mathrm{N} 2-\mathrm{H} 8 \cdots \mathrm{O} 2^{\text {i }}$	0.76 (4)	2.22 (4)	2.965 (3)	167 (4)
$\mathrm{N} 2-\mathrm{H} 7 \ldots \mathrm{Ol}^{\text {I }}$	0.83 (3)	2.32 (4)	3.133 (3)	166 (3)
Symmetry codes: (i) $x, 1-y, \frac{1}{2}+z$; (ii) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$.				

The Zn and I atoms were located from Patterson synthesis and the remaining non- H atoms were located from weighted Fourier syntheses. Anisotropic displacement parameters were refined for all non- H atoms. All H atoms were located from difference syntheses and allowed to refine freely with individual isotropic displacement parameters.

Data collection: CAD-4-PC (Enraf-Nonius, 1993). Cell refinement: CAD-4-PC. Data reduction: CADRED in CAD-4$P C$. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEP (Johnson, 1965). Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: JZ1127). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Chen, X.-M. \& Mak, T. C. W. (1991). Inorg. Chim. Acla, 182, 139144.

Enraf-Nonius (1993). CAD-4-PC. Version 1.2. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Templeton, D. H. \& Templeton, L. K. (1978). AGNOSTIC. Program for Absorption Correction. University of California, Berkeley, CA, USA.
Zeleňák, V., Györyová, K. \& Císařová, I. (1995). Main Group Met. Chem. 18, 211-216.
Zeleňák, V., Györyová, K., Císařová, I. \& Loub, J. (1996). Acta Cryst. C52, 808-810.

Acta Cryst. (1996). C52, 1919-1921

trans-2,2,4,4-Tetrafluoro-1,3-diphenyl-1,3-diphosphetanediyl-1,3-bis[pentacarbonylchromium(0)]

Peter G. Jones
Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany. E-mail: p.jones@tu-bs.de

(Received 25 March 1996; accepted 11 April 1996)

Abstract

The title compound, $\left[\mathrm{Cr}_{2}(\mathrm{CO})_{10}\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{P}_{2}\right)\right]$, displays inversion symmetry. The $\mathrm{P}-\mathrm{CF}_{2}$ bond is somewhat lengthened on complexation and the phenyl-diphosphetane interplanar angle reduced from $89.15(6)^{\circ}$ in the free ligand to $61.4(1)^{\circ}$ in the complex. The $\mathrm{P}-\mathrm{Cr}$ bond is short [2.3149 (6) A].

\section*{Comment}

We recently reported the preparation and structure of trans-2,2,4,4-tetrafluoro-1,3-diphenyl-1,3-diphosphetane (Fild, Jones, Ruhnau \& Thöne, 1994). Here we extend our studies to the structure of its 1,3-bis[pentacarbonylchromium(0)] complex, (I). (I)

The title complex crystallizes with inversion symmetry (as does the free ligand) and the central fourmembered diphosphetane ring is thus exactly planar (Fig. 1). The $\mathrm{P}-\mathrm{CF}_{2}$ bond is significantly lengthened on complexation, with values of 1.9089 (14) and 1.9065 (13) \AA [1.8932 and 1.8886 (14) \AA for the free ligand, hereafter in square brackets]. In previous papers, we suggested that $\mathrm{P}-\mathrm{C}_{\text {halide }}$ bonds are systematically lengthened with respect to non-halogenated systems (Jones \& Bembenek, 1996, and references therein), but here the long bonds may at least in part be attributed to the diphosphetane ring system, for which a search of the Cambridge Structural Database (Allen \& Kennard, 1993) gave a mean P-C bond length of $1.881 \AA$ (sample e.s.d. $0.017 \AA$ for 29 values).

Other bond lengths and angles in the diphosphetane ring are scarcely altered on complexation; $\mathrm{P}-\mathrm{C}_{\mathrm{Ph}}$ $1.8146(14) \AA[1.8161(14) \AA], \mathrm{P}-\mathrm{CF}_{2}-\mathrm{P} 97.43(6)^{\circ}$ [98.20(6) ${ }^{\circ}$] and $\mathrm{CF}_{2}-\mathrm{P}-\mathrm{CF}_{2} 82.57(6)^{\circ}\left[81.80(6)^{\circ}\right.$]. The conformation, however, shows a major difference,

Fig. 1. A view of the molecule of the title compound in the crystal. Ellipsoids correspond to 50% probability levels and H -atom radii are arbitrary. Only the asymmetric unit is numbered.
in that the phenyl-diphosphetane interplanar angle is reduced from $89.15(6)^{\circ}$ in the free ligand to $61.4(1)^{\circ}$ in the complex, presumably because of the steric demands of the metal fragment.
The $\mathrm{P}-\mathrm{Cr}$ bond of 2.3149 (6) \AA is much shorter than that in $\mathrm{Ph}_{3} \mathrm{PCr}(\mathrm{CO})_{5}$ [2.422(1) \AA; Plastas, Stewart \& Grimm, 1973] and the trans-Cr-C bond is correspondingly longer [1.8794 (15) cf. 1.845 (4) \AA]. We and others have already noted the tendency of phosphines bearing electronegative substituents to form short metalphosphorus bonds (Heuer, Bode, Jones \& Schmutzler, 1989, and references therein).

Experimental

The title compound was obtained from pre-irradiated $\mathrm{Cr}(\mathrm{CO})_{6}$ and the diphosphetane ligand in tetrahydrofuran. It was purified chromatographically and recrystallized from petroleum ether (Ruhnau, 1992).

Crystal data

$\left[\mathrm{Cr}_{2}\left(\mathrm{CO}_{10}\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{P}_{2}\right)\right]\right.$
$M_{r}=700.26$
Triclinic
$P \overline{1}$
$a=8.427(2) \AA$
$b=9.043$ (2) \AA
$c=10.195(2) \AA$
$\alpha=115.61$ (2) ${ }^{\circ}$
$\beta=102.39(2)^{\circ}$
$\gamma=90.07(2)^{\circ}$
$V=680.4(3) \AA^{3}$
$Z=1$
$D_{x}=1.709 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 diffractometer $\quad R_{\text {int }}=0.0105$

ω / θ-scans	$\theta_{\max }=27.52^{\circ}$
Absorption correction:	$h=-10 \rightarrow 10$
\quad none	$k=-11 \rightarrow 11$
5285 measured reflections	$l=-13 \rightarrow 13$
3106 independent reflections	3 standard reflections
2972 observed reflections	frequency: 100 min
$\quad[I>2 \sigma(I)]$	intensity decay: none

Refinement

Refinement on F^{2}
$R(F)=0.0219$
$w R\left(F^{2}\right)=0.0632$
$S=1.080$
3101 reflections
190 parameters
H atoms refined as riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0289 P)^{2}\right.$
$+0.3557 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=-0.001$
$\Delta \rho_{\text {max }}=0.463 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.418$ e \AA^{-3}
Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Cr	0.30097 (2)	0.31958 (2)	0.64309 (2)	0.01346 (7)
P	0.13640 (4)	0.51516 (4)	0.61822 (3)	0.01253 (8)
C1	0.0945 (2)	0.5421 (2)	0.43888 (14)	0.0154 (2)
C2	0.1661 (2)	0.71795 (15)	0.77623 (14)	0.0156 (2)
C3	0.1138 (2)	0.7310 (2)	0.90176 (15)	0.0213 (3)
C4	0.1520 (2)	0.8768 (2)	1.0329 (2)	0.0269 (3)
C5	0.2432 (2)	1.0093 (2)	1.0405 (2)	0.0258 (3)
C6	0.2958 (2)	0.9964 (2)	0.9170 (2)	0.0223 (3)
C7	0.2580 (2)	0.8514 (2)	0.78448 (15)	0.0182 (2)
C8	0.4358 (2)	0.1653 (2)	0.6714 (2)	0.0217 (3)
C9	0.4185 (2)	0.3209 (2)	0.5039 (2)	0.0188 (3)
C10	0.4531 (2)	0.4933 (2)	0.8010 (2)	0.0223 (3)
C11	0.1830 (2)	0.3149 (2)	0.78214 (15)	0.0192 (3)
C12	0.1563 (2)	0.1404 (2)	0.48246 (15)	0.0186 (3)
F1	0.13473 (10)	0.69503 (10)	0.45406 (9)	0.0217 (2)
F2	0.17691 (10)	0.43889 (11)	0.34076 (9)	0.0231 (2)
O8	0.5185 (2)	0.07063 (14)	0.68539 (14)	0.0341 (3)
O9	0.49202 (13)	0.31668 (13)	0.42078 (13)	0.0267 (2)
O10	0.5463 (2)	0.59481 (15)	0.89545 (14)	0.0377 (3)
O11	0.11280 (14)	0.31430 (14)	0.86565 (12)	0.0282 (2)
O 12	0.07598 (14)	0.02915 (13)	0.38622 (12)	0.0286 (2)

Table 2. Selected geometric parameters $\left.\left(\AA^{\circ}\right)^{\circ}\right)$

$\mathrm{Cr}-\mathrm{C8}$	1.8794 (15)	P--C2	1.8146 (14)
$\mathrm{Cr}-\mathrm{C} 9$	1.9011 (15)	$\mathrm{P}-\mathrm{Cl}$	1.9065 (13)
$\mathrm{Cr}-\mathrm{C} 10$	1.904 (2)	$\mathrm{P}-\mathrm{Cl}^{\text {i }}$	1.9089 (14)
$\mathrm{Cr}-\mathrm{Cl} 2$	1.907 (2)	$\mathrm{Cl}-\mathrm{Fl}$	1.3576 (15)
$\mathrm{Cr}-\mathrm{Cl1}$	1.9123 (15)	C1-F2	1.3589 (15)
$\mathrm{Cr}-\mathrm{P}$	2.3149 (6)		
$\mathrm{C8}-\mathrm{Cr}-\mathrm{P}$	177.77 (4)	$\mathrm{Fl}-\mathrm{Cl}-\mathrm{P}$	116.53 (9)
$\mathrm{C} 2-\mathrm{P}-\mathrm{Cl}$	108.31 (6)	F2--Cl-P	110.81 (9)
$\mathrm{C} 2-\mathrm{P}-\mathrm{Cl}^{1}$	104.09 (6)	$\mathrm{Fl}-\mathrm{Cl}-\mathrm{P}^{\text {d }}$	112.04 (9)
$\mathrm{Cl}-\mathrm{P}-\mathrm{Cl}^{\text {i }}$	82.57 (6)	F2-Cl- $\mathrm{P}^{\text {i }}$	114.54 (9)
$\mathrm{C} 2-\mathrm{P}-\mathrm{Cr}$	117.71 (5)	$\mathrm{P}-\mathrm{Cl}^{-\mathrm{P}^{\text {i }}}$	97.43 (6)
$\mathrm{Cl}-\mathrm{P}-\mathrm{Cr}$	120.60 (4)	$\mathrm{C7}-\mathrm{C} 2-\mathrm{C} 3$	119.72 (12)
$\mathrm{Cl}^{\text {i}}-\mathrm{P}--\mathrm{Cr}$	117.54 (4)	C7--2-P	122.52 (10)
F1-C1-F2	105.75 (10)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{P}$	117.09(10)

Symmetry codes: (i) $-x, 1-y, 1-z$.
Data collection: DIF4 (Stoe \& Cie, 1991a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe \& Cie, 1991b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick,
1993). Molecular graphics: $X P$ (Siemens, 1994). Software used to prepare material for publication: SHELXL93.

Crystals of the title compound were kindly provided by Dr C. Ruhnau and Professor M. Fild of this Institute. We thank the Fonds der Chemischen Industrie for financial support and Mr A. Weinkauf for technical assistance.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and torsion angles have been deposited with the IUCr (Reference: FG1186). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
Fild, M., Jones, P. G., Ruhnau, C. \& Thöne, C. (1994). Z. Naturforsch. Teil B, 49, 1361-1367.
Heuer, L., Bode, U. K., Jones, P. G. \& Schmutzler, R. (1989). Z. Naturforsch. Teil B, 44, 1082-1092.
Jones, P. G. \& Bembenek, E. (1996). Acta Cryst. C52. In the press.
Plastas, H. J., Stewart, J. M. \& Grimm, J. O. (1973). Inorg. Chem. 12, 265-272.
Ruhnau, C. (1992). PhD thesis, Technical University of Braunschweig, Germany.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Stoe \& Cie (1991a). DIF4. Diffractometer Control Program. Version 7.08. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1991b). REDU4. Data Reduction Program. Version 7.08. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1996). C52, 1921-1924

cis-Dibromobis(dimethyl sulfoxide-S)platinum(II) and trans-Bis(dimethyl sulf-oxide-S)diiodoplatinum(II)

Karin Lövqvist

Inorganic Chemistry 1, Chemical Center, University of Lund, PO Box 124, S-221 00 Lund, Sweden. E-mail: karin. lovqvist@inorgkl.lu.se
(Received 21 December 1995; accepted 18 March 1996)

Abstract

The Pt atom has a slightly distorted square-planar coordination in both title compounds, cis- $\left[\mathrm{PtBr}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}\right]$ and trans- $\left[\mathrm{PtI}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)_{2}\right]$, with the dimethyl sulfoxide

ligands bonded via their S atoms. The bond distances to platinum in the bromo compound are $\mathrm{Pt}-\mathrm{Br} 2.441$ (1) and 2.447 (2), and $\mathrm{Pt}-\mathrm{S} 2.254$ (2) and 2.245 (2) \AA, and in the centrosymmetric iodo complex are $\mathrm{Pt}-\mathrm{I}$ 2.6111 (9) and Pt-S 2.289 (2) Å.

Comment

With the thioethers dimethyl sulfide and 1,4-thioxane, both the cis- and trans- $\left.\left[\mathrm{PtCl}_{2} \text { (thioeter) }\right)_{2}\right]$ isomers can be synthesized and crystallized (Horn, Kumar, Maverick, Fronczek \& Watkins, 1990; Kukushkin, Lövqvist, Norén, Oskarsson \& Elding, 1992; Bugarcic, Lövqvist \& Oskarsson, 1993). For iodo complexes, however, only a trans-thioether compound has been reported previously (Oskarsson, Norén, Svensson \& Elding, 1990), indicating that the trans configuration might be the preferred isomer for iodide. Also, with sulfoxide ligands, both cis and trans isomers could be obtained for the dichloro complexes of platinum(II). The cis isomer seems to be the thermodynamically more stable complex as the preparation of trans- $\left[\mathrm{PtCl}_{2}(\mathrm{dmso})_{2}\right.$] [dmso is dimethyl sulfoxide, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO}$] results in rapid isomerization to the cis isomer. trans- $\left[\mathrm{PtCl}_{2}(\mathrm{dmso})_{2}\right]$ has been prepared by a bridge-splitting reaction and the trans-tocis isomerization rate was followed with ${ }^{1} \mathrm{H}$ NMR by Annibale, Bonivento, Canovese, Cattalini, Michelon \& Tobe (1985), who claimed that complexes of the type [$M X_{2} L_{2}$] adopt the trans configuration when M is Pd , but that the cis configuration is preferred when M is Pt , except for very sterically demanding sulfoxides. Melanson \& Rochon $(1987,1988)$ were able to prepare and determine the structures of both cis and trans isomers of $\left.\left[\mathrm{PtCl}_{2} \text { (di-n-propyl sulfoxide) }\right)_{2}\right]$. The crystal structure of cis- $\left[\mathrm{PtCl}_{2}(\mathrm{dmso})_{2}\right]$ has been reported (Melanson \& Rochon, 1975; Shibaeva, 1983), but investigations of the bromo and iodo complexes of $\left[\mathrm{Pt} X_{2}(\mathrm{dmso})_{2}\right]$ have, so far, not resulted in any reported crystal structures, though the structure of $c i s-\left[\mathrm{PtBr}_{2}(\mathrm{dmso})_{2}\right]$ was referred to by Kukushkin et al. (1991). For cis isomers, steric repulsion increases in the series $\mathrm{Cl}<\mathrm{Br}<\mathrm{I}$ and it is of interest to investigate the isomerism of the different halides in $\left[\mathrm{Pt} X_{2}(\mathrm{dmso})_{2}\right]$. Hence, halides of platinum(II) ($X=\mathrm{Cl}, \mathrm{Br}, \mathrm{I}$) were dissolved in dimethyl sulfoxide. This resulted in cis isomers for Cl and $\mathrm{Br},(1)$, and a trans isomer for I, (2), both in the solid state and in solution.

(1)

(2)
cis- $\left[\mathrm{PtBr}_{2}(\mathrm{dmso})_{2}\right]$, (1), is isostructural with cis$\left[\mathrm{PtCl}_{2}(\mathrm{dmso})_{2}\right]$. The coordination around platinum is distorted square planar and the dimethyl sulfoxide mol-

